

A Multimedia Model For Nanoparticle Fate And Biotic Update In The Environment

Stephen Lofts^{1,*}, Egon Dumont¹, Virginie Keller¹, Richard Williams¹, Antonia Praetorius², Frank von der Kammer², Geert Cornelis³, Susana Loureiro⁴, Nico van den Brink⁵

- ¹ NERC Centre for Ecology and Hydrology, Lancaster/Wallingford, UK
- ² University of Vienna, Vienna, Austria
- ³ Swedish University of Agricultural Sciences, Uppsala, Sweden
- ⁴ University of Aveiro, Aveiro, Portugal
- ⁵ Wageningen University, Wageningen, The Netherlands

ISES 2016 Meeting Utrecht 12/10/2016

Outline

- Overall aims of NanoFASE
- ENM complexity and environmental fate modelling
- The object-oriented approach
- Conceptualisation
- Nanoparticle forms and states
- Transport and transformations
- Flexibility and futureproofing
- Next steps in NanoFASE

Overall aims of NanoFASE

Nanomaterial <u>FA</u>te and <u>Speciation</u> in the <u>Environment</u>

- <u>"Reactors" and relevant</u> <u>ENMs</u> (using the right starting materials at each step)
- Functional fate groups a tool to understand and reduce complexity
- <u>Exposure assessment</u> <u>framework</u> catalogue of models, parameters and methods
- <u>Multimedia fate models</u> simplified to feed regulatory models (SimpleBox for Nano)

ENM complexity and fate modelling

The object-oriented approach

GEEK

OBJECTS

SCIENCE OF THE

NER

CLASSES

Conceptualisation

Conceptualisation II

Conceptualisation III

= 'compositional relationship'

Object is contained within another object.

e.g. river reaches will contain biota

>>>

RiverRiver object contains one or more Biota objects

Conceptualisation of nanoparticles

Reactor

Transformations 'wrapped' into Reactor class

Reactor objects define nanoparticles

EXAMPLE F1 = free particles

F2 = heteroaggregated

S1 = coated, no corona

- S2 = uncoated, no corona
- S3 = coated, corona
- S4 = uncoated, corona

	S1	S2	S 3	S4
F1	C(1,1)	C(2,1)	C(3,1)	C(4,1)
F2	C(1,2)	C(2,2)	C(3,2)	C(4,2)

- $S1 \rightarrow S2$: coating lost
- $S1 \rightarrow S3$: corona acquired (coating present)
- $S2 \rightarrow S3$: corona acquired

Flexibility and futureproofing

SubClass extends BaseClass with new functionality (e.g. extending a Reactor with new transformation types)

Interfacing with other models

Next steps in NanoFASE

- Write transport model soil & waters
- 'Technical' workpackages: develop & parameterise transformation algorithms
- Integrate algorithms and parameters into transport model (Reactor classes > objects)
- Interfacing of soil-water model with release and atmospheric models

Thank you very much

Any Questions?